ペプチドで元気を世界へ 一事業計画及び成長可能性に関する事項一

2024年3月21日株式会社ファンペップ証券コード4881

- 1. 会社概要
- 2. 事業概要
- 3. 抗体誘導ペプチドプロジェクト
- 4. 抗体誘導ペプチドの開発パイプライン
- 5. 皮膚潰瘍治療薬「SR-0379」
- 6. 研究開発パイプライン
- 7. ビジネスモデル

会社概要

http://www.funpep.co.jp

Mission

ファンペップは、ペプチド技術を追求し、人々が幸せに暮らせるように貢献します。

Vision

ペプチドで元気を世界へ

元気とは、心身の活動の源となる力。健康とは、心身が健やかなこと。 私たちファンペップは、ペプチドの研究開発を通じて、世界の人々を健康にするだけではなく、 元気を与えられるような会社を目指します。

Values

- ■私たちは、誰よりもペプチドの可能性を信じ、困難な課題に挑戦し、追求します。
- ■私たちは、互いを尊重し、感謝し合い、協同します。
- ■私たちは、私たち自身が常に健康を意識し、元気であり続けます。
- ■私たちは、人々に活力を与えるペプチド製品を世の中に提供していきます。

独自のペプチド技術を活用し、画期的な医薬品を創出します。 抗体誘導ペプチドを「次世代ワクチン」として完成させるために尽力します。 医薬品に限らず「ペプチドヘルス」「ペプチドコスメ」など新たな市場を開拓します。

<設立の経緯>

大阪大学大学院医学系研究科の機能性ペプチドの研究成果を実用化する目的で設立

社名	株式会社ファンペップ(FunPep Company Limited)	
所在地	大阪府茨木市彩都あさぎ七丁目7番15号	
設立年月	2013年10月11日	
代表者	代表取締役社長 三好 稔美	
事業内容	機能性ペプチドの研究開発	
事業所	東京オフィス(東京都中央区) 千里リサーチセンター(大阪府吹田市)	
従業員数	19名(2023年12月末現在、派遣社員を含む) 内、研究開発部門 13名	

マネジメントチーム (1/2)

代表取締役社長三 好 稔美

薬学博士, Ph.D

製薬会社(グラクソ・スミスクライン㈱、サノフィ㈱等)及び投資会社(MBLベンチャーキャピタル㈱、 日興アントファクトリー㈱、 そーせいCVC㈱)を経験

2013年10月に当社監査役、2020年1月から当社代表取締役社長

取締役研究開発部長 兼 CSO 富 岡 英 樹

医学博士, Ph.D

1997年 小野薬品工業㈱、2005年 アンジェスMG㈱

2015年7月に当社入社し、2019年3月から当社取締役研究開発部長兼CSO

取締役管理部長 兼 CFO 林 毅 俊

1997年 (㈱富士総合研究所、2001年 アンジェスMG(㈱、2010年 ㈱キャンバス、2014年 Delta-Fly Pharma(㈱ **2015年5月に当社入社し、2015年12月から当社取締役管理部長兼CFO**

マネジメントチーム (2/2)

社 外 取 締 役 栄 木 憲 和

元バイエル薬品(株) 代表取締役社長 数多くの製薬会社及びバイオベンチャーの社外取締役に就任(アンジェス(株)、東和薬品(株)、 ソレイジア・ファーマ(株)、キッズウェル・バイオ(株)の社外取締役)

2015年3月から当社社外取締役

社外取締役原 誠

元大日本住友製薬㈱ 取締役専務執行役員

2024年3月から当社社外取締役

常勤社外監査役 堀 口 基 次

元シンバイオ製薬㈱ 取締役執行役員管理本部長

2015年3月から当社常勤社外監査役

社 外 監 査 役南成 人

仰星監査法人理事、日本公認会計士協会副会長

2015年3月から当社社外監査役

社 外 監 査 役眞 鍋淳 也

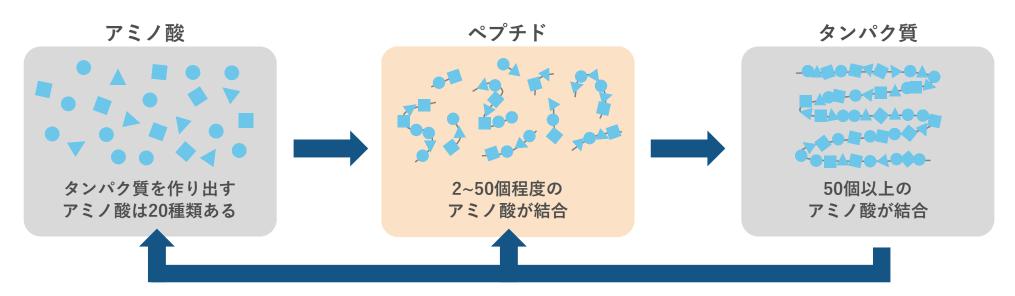
弁護士・公認会計士、南青山M's法律会計事務所代表

2022年3月から当社社外監査役

※ 2024年3月27日開催予定の第11期定時株主総会を経て正式に決定する予定です

沿革

2013年10月	大阪大学大学院医学系研究科の機能性ペプチドの研究成果を実用化する目的で㈱ファンペップ設立	
2015年7月	大阪大学との間で、 抗体誘導ペプチド に関する共同研究を開始	
2015年10月		
	塩野義製薬㈱との間で、SR-0379に関するライセンス契約を締結	
2016年2月		
2018年3月	大日本住友製薬㈱(現住友ファーマ㈱)との間で、 抗体誘導ペプチド FPP003に関するオプション契約を締結	
2018年7月	塩野義製薬㈱がSR-0379の皮膚潰瘍を対象とする日本での第Ⅱ相臨床試験を開始	
2019年4月	抗体誘導ペプチド FPP003の乾癬を対象とするオーストラリアでの第 I / II a相臨床試験を開始	
2020年12月	東京証券取引所マザーズ市場に株式上場 (2022年4月の市場区分見直しにより、グロース市場に移行)	
2021年6月	SR-0379の皮膚潰瘍を対象とする日本での第Ⅲ相臨床試験を開始	
2022年10月	アンチエイジングペプタイド㈱(現㈱ファンペップヘルスケア)を株式交換により完全子会社化	
2024年3月	塩野義製薬㈱との間で、 抗体誘導ペプチド FPP004Xに関するオプション契約を締結	


事業概要

http://www.funpep.co.jp

細胞の中で、アミノ酸がタンパク質になる過程でできた、 タンパク質よりアミノ酸の数が少ない固まり。

タンパク質の状態では体内に吸収できないため、つながりを短くしていき、アミノ酸やペプチドに分解されます。 分解されたアミノ酸やペプチドはさらに分解されたり、あるいはタンパク質に合成され、 血液によって各組織へ運ばれ、筋肉、内臓、骨などの材料になったり、体の中でさまざまな機能を果たしている。

ペプチドの特徴

- ・小さいので、合成で簡単に作れるため、改変することで最適化をしやすい
- ・食品や美容の分野でも注目されていて、製品に使用されている

当社グループの機能性ペプチド

30個のアミノ酸からなるAG30を起源とし、そのペプチドを構成するアミノ酸の一部を加工し、 20個のアミノ酸にすることによって、目的とする機能を最適化した機能性ペプチドを見出した

安定性、製造コスト の最適化 20個のアミノ酸 機能性ペプチド「SR-0379」 ・血管新生作用 ・抗菌活性

身体に入り、分解されると効果が出ないため、 **分解されないように、切れやすい部分を 強力なものに最適化して安定性を上げる**

アジュバント機能 の最適化

20個のアミノ酸 機能性ペプチド「AJP001」

<機能>

・免疫反応の アジュバント

免疫力向上の機能を強化して、 **抗体誘導ペプチドの 創薬活動のコア技術として確立** 抗菌機能の最適化

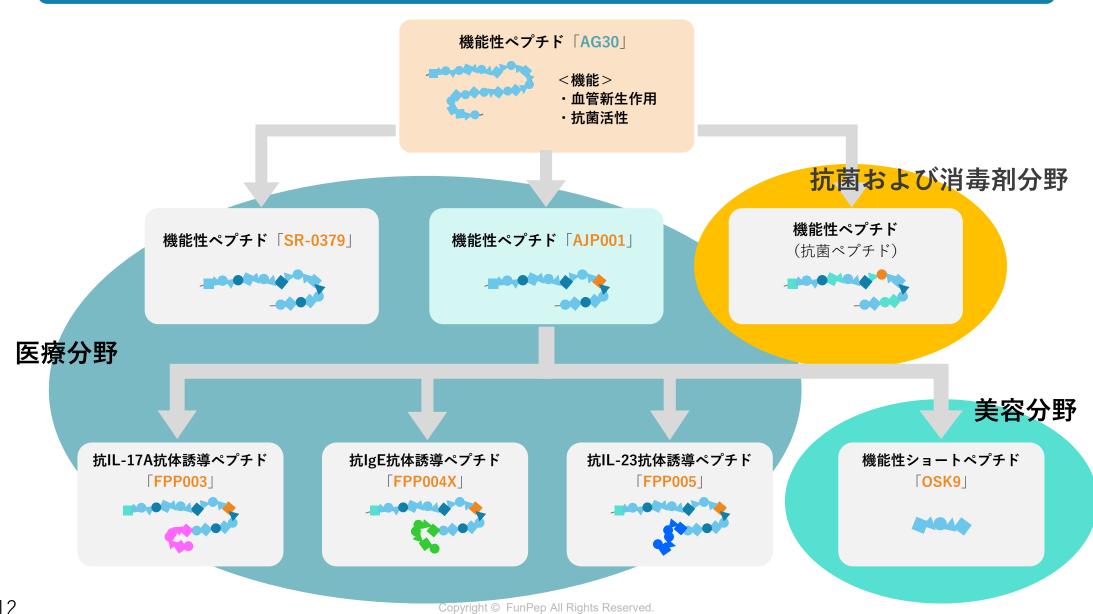
20個のアミノ酸 機能性ペプチド

(抗菌ペプチド)

<機能> ・抗菌作用

抗菌という点に注目し、 **除菌スプレーの成分として 製品に配合**

当社グループの機能性ペプチド



ヒト由来抗菌ペプチドAG30を起源とし、 ペプチド加工ノウハウを強みに研究開発パイプラインを構築

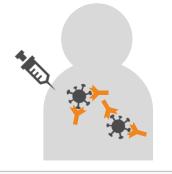
医療分野に限らず、 抗菌および消毒剤分野、さらに美容分野への市場の広がりを考えて事業展開しています

抗体誘導ペプチドプロジェクト

一創薬プラットフォーム技術に強み一

http://www.funpep.co.jp

ワクチンで病気を治療する

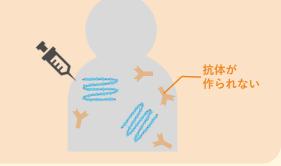


一般的にワクチンは病気を「予防」するものですが、病気の「治療」に使われることが革新的!

感染症 予防ワクチン

ウイルスや細菌に対する 抗体などを作り出し、病気を予防する

> 体にとって異物なので 免疫が反応して抗体が作られる


ワクチンには、ウイルス(全体や一部)等を用いる

「予防」するワクチンから 「治療」するワクチンへ

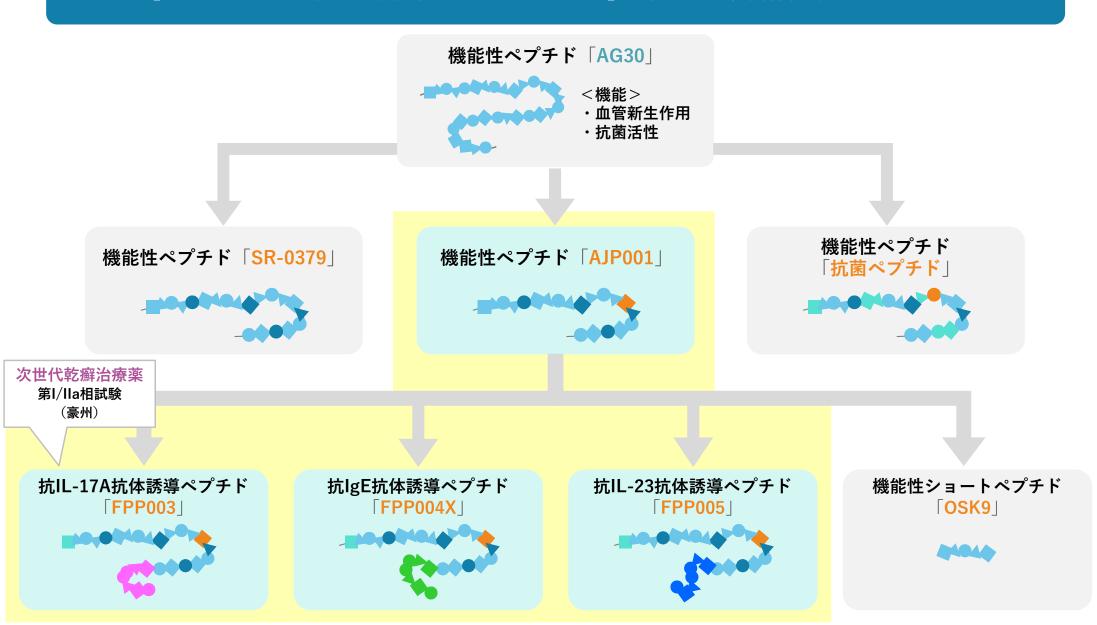
慢性疾患 治療ワクチン(抗体誘導ペプチド)

体の中の疾患関連タンパク質に対する 抗体などを作り出し、疾患を治療する

体の中にある自己タンパク (疾患関連タンパク質)には免疫が 反応しないため通常は抗体が作られない。

抗体を作るために、ワクチンには、 疾患関連タンパク質(一部)と、免疫力を向上させる物質を 用いる必要がある

【免疫力を向上させる物質】


■他社:生物由来「タンパク」を使用 反復投与すると薬物に対する抗体ができ、効果が減弱してしまう

■ファンペップ:独自の「ペプチド」を使用

反復投与しても薬物に対する抗体ができず、効果が持続する

「AG30」を起源として見出した機能性ペプチド「AJP001」を使用した、抗体誘導ペプチドプロジェクト

ファンペップが手掛ける 抗体誘導ペプチドプロジェクトとは?

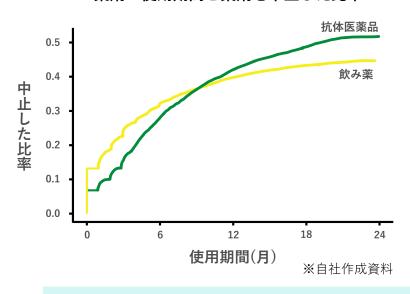
慢性疾患を対象として、
ファンペップ独自の抗体誘導ペプチドの
創薬プラットフォーム技術を活用し、
治療ワクチンとして、
体の中の疾患関連タンパク質に対する抗体を作り出し、
疾患を治療する

抗体誘導ペプチドの対象疾患 慢性疾患とは?

慢性疾患とは、「持病」のことをいいます。

徐々に発症して治療も経過も長期に及ぶ疾患の総称で、 生活習慣病である糖尿病や高血圧、高脂血症などに代表されます。

治療も経過も長期に及ぶことから、


薬を服用し続けないといけない、定期的に通院し続けないといけない疾患になります。

慢性疾患の治療薬は、長く使い続けなければいけないのに、

実際には、長く使われていないことが多かった

薬剤の使用期間と薬剤を中止した比率

左記のように、

実際の薬剤使用データ(米国での乾癬治療薬)において、

使用開始から2年後には約40-50%の薬剤が使用中止にいたっていることが 分かりました。

(出所) Feldman SR et al. Real-world biologic and apremilast treatment patterns and healthcare costs in moderate-to-severe plaque psoriasis. Dermatol Online J. 2021; 27:13030/qt03t0s9j6.

≪実態を考察≫

※様々な要因が考えられる中で、以下の2つに着目しました

■体外で製造する抗体医薬には、

薬に対しての抗体(抗薬物抗体)ができ、効果が減弱してしまう問題

■慢性疾患の既存薬には、患者様に正しく服用されず、

効果が不十分になったり副作用が発現してしまう「アドヒアランス」の問題

※アドヒアランスとは?

患者が積極的に治療方針の決定に参加し、その決定に従って服薬遵守すること。 米国乾癬治療薬の上記調査では、アドヒアランスが良好な患者の割合は約20-30%程度しかありません。 Copyright © Funder All Rights Reserved.

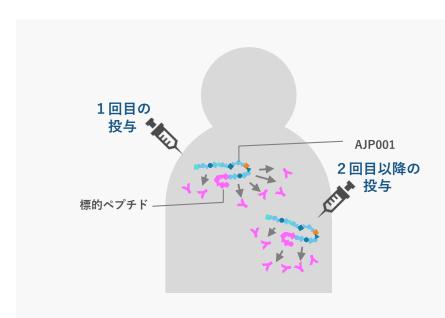
体外で製造する抗体医薬には、

薬に対しての抗体(抗薬物抗体)ができ、効果が減弱してしまう問題 がある

慢性疾患の既存薬には、

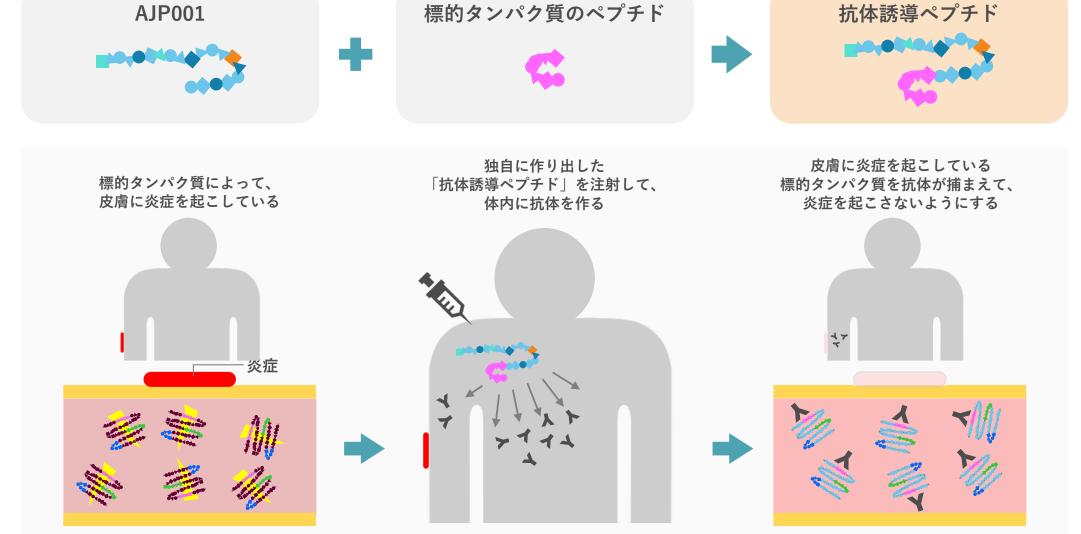
患者様に正しく服用されず、効果が不十分になったり副作用が発現してしまう 「アドヒアランス」 の問題 がある

①体内で抗体を産生して薬の効果が落ちにくい


②薬の投与間隔が長く、アドヒアランスが向上する

12を同時に満たす薬剤が望ましい

ファンペップ独自の"抗体誘導ペプチド"技術を活用して、 ワクチンで慢性疾患にアプローチ

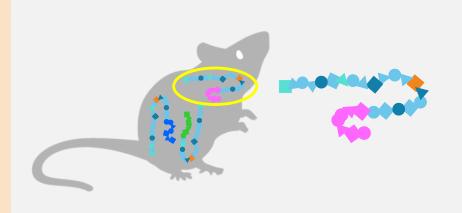

<u>体外で作る抗体医薬には、薬剤に対する抗体ができ、</u> 徐々に効果が減弱してしまうことがある。

しかし、抗体誘導ペプチド(ワクチン)によって、 体内で抗体を作れば、効果が持続する。

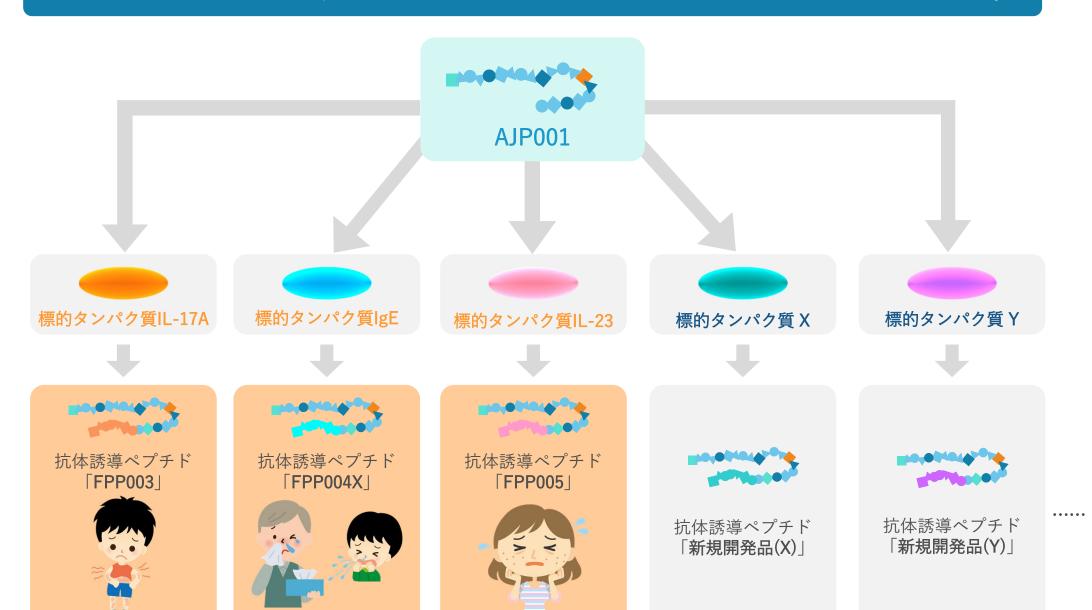
抗体誘導ペプチド(ワクチン)は、<u>体内</u>で抗体を一定期間産生するので、 抗薬物抗体の問題が生じず、投与間隔が長くなるため、 問題を改善することができる

免疫力を向上させる「AJP001」と標的タンパク質のペプチドを結合させて、 最適化した独自の「抗体誘導ペプチド」を体内に入れることにより、抗体を作り出す

プラットフォーム技術「STEP UP」とは



「AJP001」を使用した 独自の抗体誘導ペプチドの創薬プラットフォーム技術、「STEP UP(Search Technology of EPitope for Unique Peptide vaccine)」を活用し、標的タンパク質を選定し最適化することができる。


④ 免疫力を向上させる「AJP001」と結合し、最適化する

 ⑤ 動物試験にて、さらに効果的な 抗体誘導ペプチドを絞り込む

STEP UP技術を活用し、様々な標的タンパク質に対する開発品を創出しています。

Copyright or runner Air Rights Reserved.

抗体医薬品と抗体誘導ペプチドは、 「抗体」による標的タンパク質を阻害する作用メカニズムが同じなため、 開発に着手しやすい。

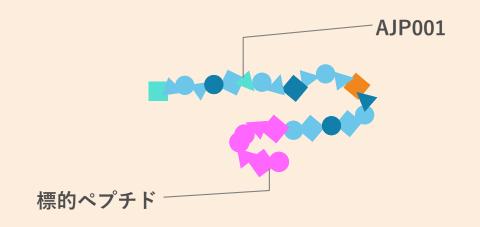
領域	主な標的タンパク質 ^{注1}	主な対象疾患
免疫・炎症	<mark>L-17A</mark> 、 <mark>L-23</mark> 、 gE、TNFα、 L-12/23p40、 L-6、α4β7インテグリン、 L-4/13、 L-5、 BLyS、 L-13、その他	尋常性乾癬、強直性脊椎炎、花粉症(季節性アレルギー性鼻炎)、関節リウマチ、関節症性乾癬、X線基準を満たさない体軸性脊椎関節炎、クローン病、潰瘍性大腸炎、気管支喘息、慢性蕁麻疹、アトピー性皮膚炎、その他
精神神経	$lpha$ 4 インテグリン、CGRP、NGF $^{\pm2}$ 、アミロイド eta 、タウ $^{\pm2}$ 、 $lpha$ シヌクレイン $^{\pm2}$ 、その他	多発性硬化症、片頭痛、疼痛、アルツハイマー病、 パーキンソン病、その他
骨	RANKL、スクレロスチン	骨粗鬆症、その他
循環器	PCSK9、ANGPTL3	家族性高コレステロール血症、高コレステロール血症
その他	補体(C5)	発作性夜間ヘモグロビン尿症、その他

- (注) 1. 表中の標的タンパク質に対する受容体を含みます。うち、下線のあるものは、当社の抗体誘導ペプチド開発品の標的タンパク質です。
 - 2. 開発段階の抗体医薬品の標的タンパク質です。


標的タンパク質を阻害する作用メカニズムが同じなため、開発コストを軽減できる。

競合技術に対する優位性①

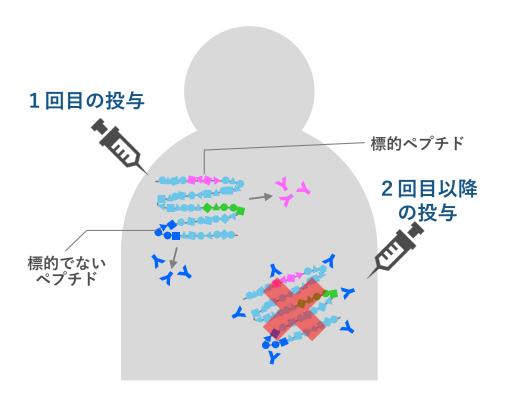
<他社のワクチン>


免疫を向上させる生物由来「タンパク」を使用

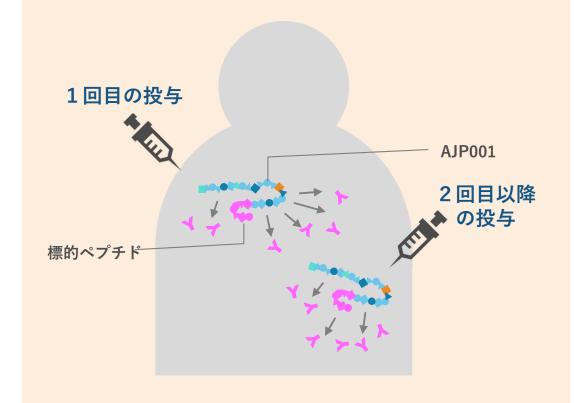
タンパク質はペプチドより大きいので、 標的ではないペプチドも含まれてしまう。 生物由来の「タンパク」を使うと、 免疫は活性化するが、外来の異物なので 標的のペプチド以外にも抗体ができてしまう。

<当社の抗体誘導ペプチド>

免疫を向上させるAJP001「ペプチド」を使用


タンパク質より小さいペプチドの AJP001を使って免疫を向上させている。 もともと身体にあるタンパク質に対して 体内で抗体を作るペプチド。

競合技術に対する優位性②

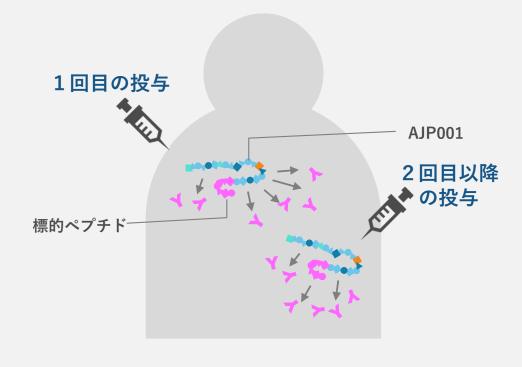

<他社のワクチン>

免疫を向上させる生物由来「タンパク」を使用

標的でないペプチドに対する抗体も 作られてしまうことがあり、 反復投与すると、投与した薬剤に反応してしまう。 薬剤を破壊してしまうことがあるため、 効果が減弱する可能性がある

< 当社の抗体誘導ペプチド > 免疫を向上させるAJP001「ペプチド」を使用

標的に対する抗体のみが作られるため、 反復投与しても、抗体を作り続けられる。



<当社の抗体誘導ペプチド>

免疫を向上させるAJP001「ペプチド」を使用

タンパク質より小さいペプチドの AJP001を使って免疫を向上させている。 もともと身体にあるタンパク質に対して 体内で抗体を作るペプチド。

標的に対する抗体のみが作られるため、 反復投与しても、抗体を作り続けられる。

ペプチドとワクチンのそれぞれの特徴を生かすことで、 治療効果が持続し、投与間隔が長く投与回数が少なくなる。

抗体誘導ペプチドの特徴を生かした各所への貢献

効果の持続性

ペプチドとワクチンのそれぞれの特徴を生かして、 薬の効果が持続的に長く続く。

すると、投与回数が少なくなる。

さらに2回目以降、長期的に使用しても薬の効果 が落ちにくい。

結果、長期にわたって使い続けることができる。

コストの軽減

標的タンパク質が分かっているので、 開発コストを軽減できる。 また、簡便な製造方法(化学合成)により、 製造コストも抑制できる。

<u>医者・患者さん</u>

アドヒアランス不良の改善で、 飲み忘れ等の心配がなく、治療効果が向上する。 投薬・通院頻度減少により患者さんへの 負担が軽減し、利便性が向上する。

2回目以降の投与でも薬の効果が落ちにくいため、 持病で生涯にわたって薬の服用が必要な人でも、 使い続けることができる。

製薬企業

薬剤費抑制等により医療費軽減へ貢献する。 また、収益性を損なうことなく、 患者さんに安く薬剤を提供できる。

抗体誘導ペプチドの開発意義

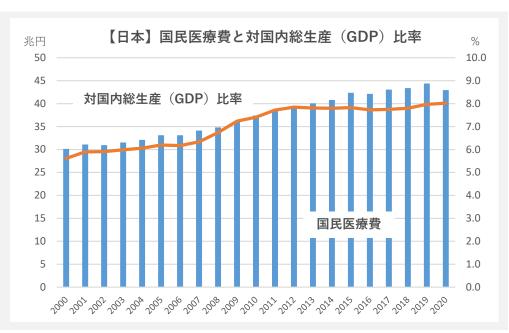
米国は医療費が世界で一番高額

国民医療費は、4兆1千億ドル(2020年。約559兆円) この20年で2兆7千億ドル(375兆円)増加。

また、一人あたり医療費は、この20年で160%増加し、 12,591ドル(169万円)と世界一高い費用

※1ドル=135円換算

(出所) Centers for Medicare & Medicaid Services.


日本でも医療費が増加

日本でも医療費は増加

国民医療費は、42兆円(2020年) この20年で約10兆円増加。

また、一人あたり医療費は、この20年で約43%増加し、 34万円(2020年)となった。

抗体誘導ペプチドの開発パイプライン

抗体誘導ペプチド「FPP003| 「FPP005| - 対象疾患及び市場性

「FPP003」「FPP005」の2つの抗体誘導ペプチドの開発により、 皮膚疾患に加え、関節疾患及び炎症性腸疾患まで幅広くカバーすることを目指す

FPP003

適応拡大の可能性 (標的:IL-17A)

➤ 強直性脊椎炎

X線基準を満たさない 体軸性脊椎関節炎

FPP005

適応拡大の可能性 (標的:IL-23)

(注) 関節症性乾癬は、FPP003及びFPP005の 両化合物の対象と想定しています

- クローン病
- 潰瘍性大腸炎

<抗IL-17抗体医薬品市場の予測>

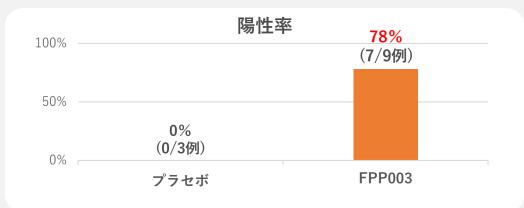
(注)標的タンパク質はIL-17A、IL-17A受容体、IL-17A,Fを含む。

<抗IL-23抗体医薬品市場の予測>

(出所) Informa社「Datamonitor Healthcare」(November 2021)データを使用

抗体誘導ペプチド「FPP003」 — 第 Ⅰ / Ⅱ a相臨床試験

<第 I / II a相臨床試験の概要>


試験デザイン	プラセボ対照二重盲検比較試験
対象患者	尋常性乾癬患者
主要評価項目	安全性及び忍容性
副次評価項目	薬物動態及び免疫原性
探索的評価項目	有効性
用法用量	FPP003(4 用量)又はプラセボを 3 回皮下投与する (Day 1, 15, 29)
目標症例数	36例

第 I / II a相臨床試験の結果

抗体価上昇を確認

治験薬の3回投与後4週間時点(第60日)において、高用量コホートの約8割に<mark>抗体価*上昇が確認</mark>されました。
* IL-17Aエピトープに対する抗体価

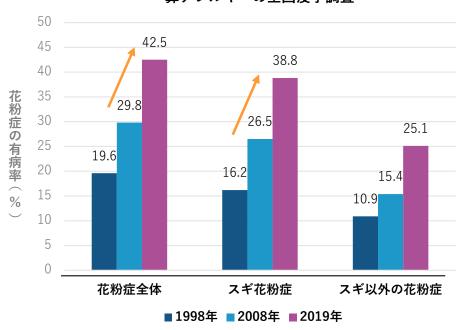
* 感染症ワクチンの陽転判定基準を参考にベースラインと比較して4倍以上に抗体価が上昇した症例を「陽性」と判定。

抗体価の持続を確認

抗体価が上昇した全7症例において、観察期間終了時点(第120日)まで抗体価上昇が持続しました。

問題となる副作用は確認されず

ワクチンで頻繁にみられる局所反応以外に、特に臨床的に問題となる副作用は確認されませんでした。


探索的評価項目の有効性は、他の臨床試験結果も踏まえて引き続き評価する方針です。

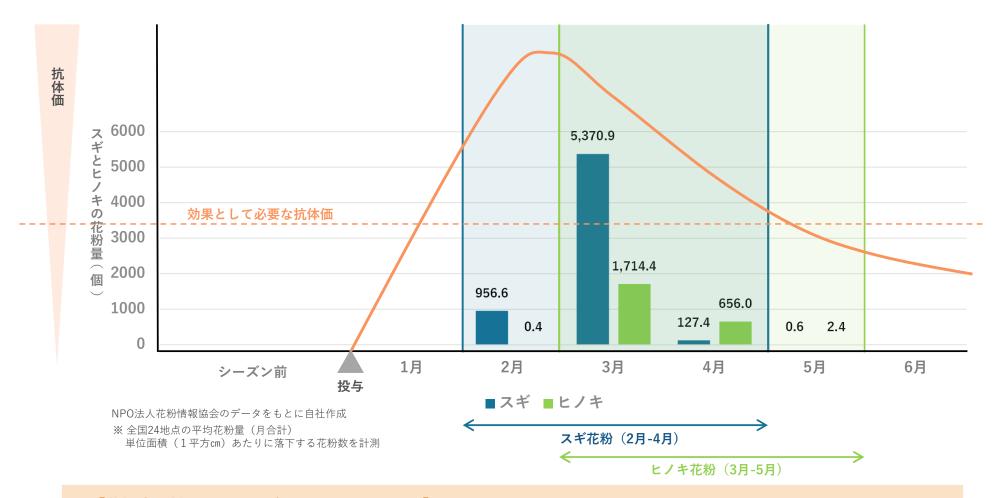
抗体誘導ペプチド「FPP004X」 - 花粉症の現状

花粉症は、有病率が10年間で10%以上増加している国民病 さらに有病率の増加が危惧されている

鼻アレルギーの全国疫学調査

花粉症の有病率は、2019年時点では、 花粉症全体で42.5%、スギ花粉症で38.8%となっていて、 10年間で10%以上増加している。

「花粉症全体」「スギ花粉症」「スギ以外の花粉症」の いずれも、1998年(20年前)の倍以上の有病率になっている。


(出所) 松原 篤他. 鼻アレルギーの全国疫学調査 2019(1998 年, 2008 年との比較): 速報 - 耳鼻咽喉科医およびその家族を対象として - . 日耳鼻 2020;123:485-490.

花粉症は、有病率の高さと症状の激しさから毎春、社会問題として各種メディアに取り上げられていて、 自然寛解が少ない疾患であることや、スギ花粉症の低年齢化などから、 さらに有病率の増加が危惧されている

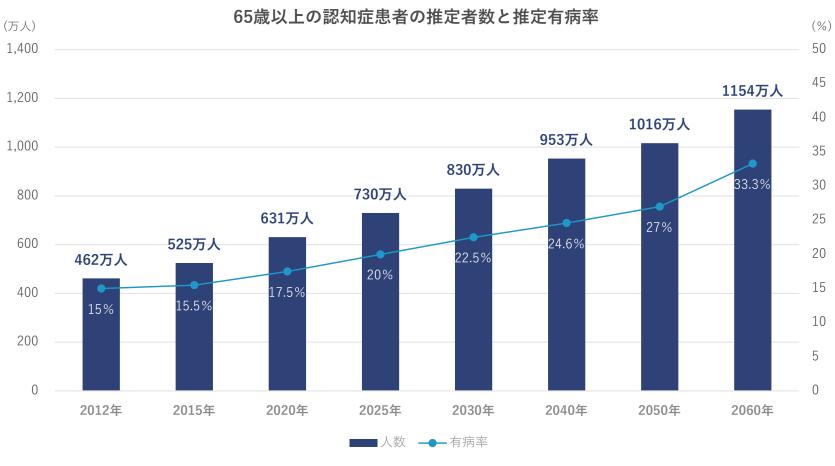
抗体誘導ペプチド「FPP004X」 - アレルギーワクチンの利便性

【臨床で想定される投与時期と抗体価推移のイメージ】

【花粉症に対するアレルギーワクチンについて】

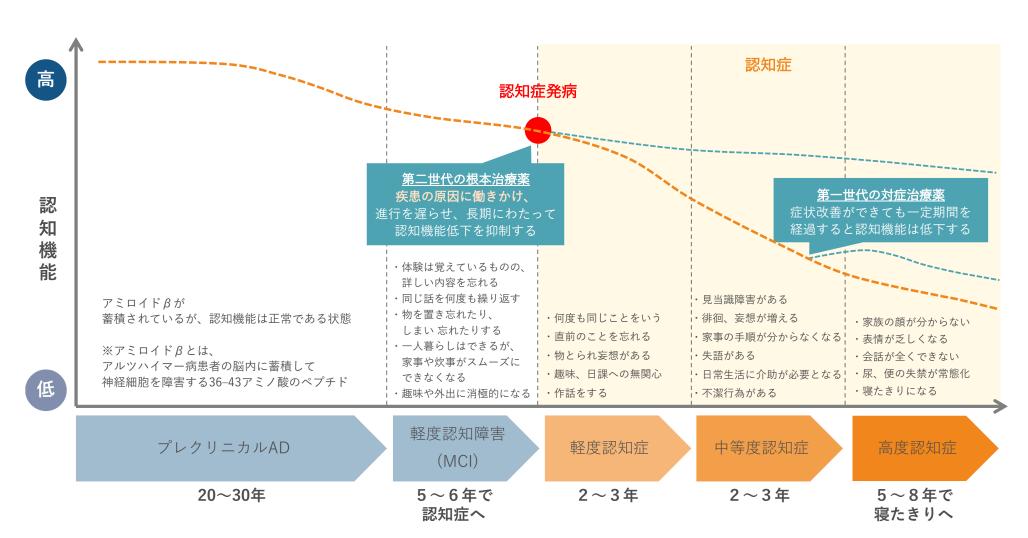
- ・花粉のシーズンの前に投与することで抗体ができる。
- ・効果の持続期間が長いというワクチンの特長により、シーズンを通じて、花粉症の症状を緩和できる。
- 毎日薬を飲まなくても、1~2回投与することで、症状が抑えられるため患者さんの利便性が高くなる。

抗体誘導ペプチドの適用範囲の拡大



アルツハイマー病ワクチン ― 認知症患者の推移

日本では、2012年の462万人から<u>2025年には約700万人</u>に増加することが見込まれており、 高齢者の5人に1人が認知症になると推計されています。

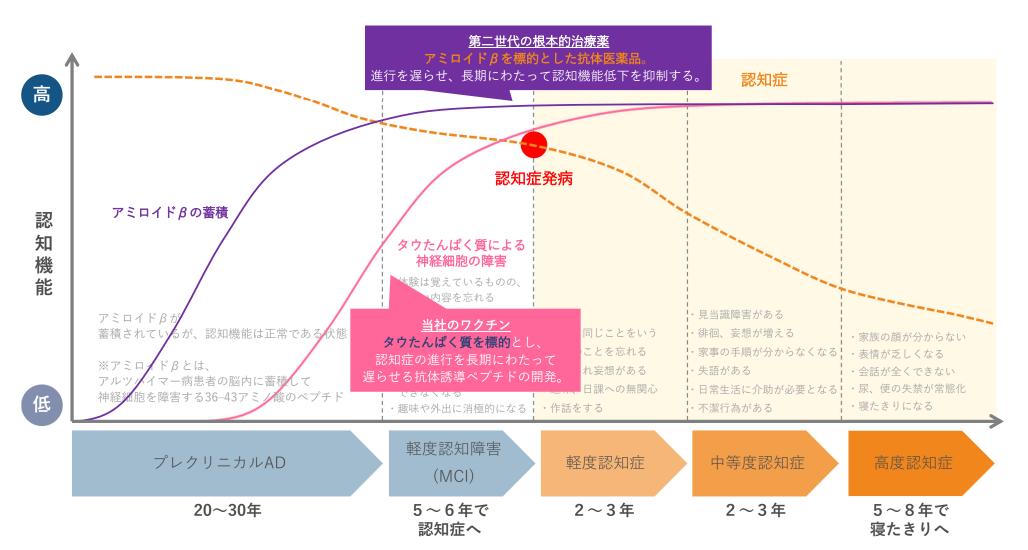

※平成29年版高齢社会白書(概要版) 「高齢者の健康・福祉」参考 (https://www8.cao.go.jp/kourei/whitepaper/w-2017/html/gaiyou/s1 2 3.html)

アルツハイマー病ワクチン - アルツハイマー病の症状と薬剤

軽度から中等度になると、食事や着替えなど日常生活の介助や、必要に応じてGPSを持たせるなどの対応が必要になってきます。 一般的な病気の場合は患者自身に負担がかかりますが、認知症の場合は介護者にも大きな負担がかかることになります。

認知症は、発症すると完全に治ることはなく、これまでは薬を飲んで症状進行を抑えるよう対処していました。 しかしながら昨今、MCIや軽度認知症で疾患の原因に働きかける根本治療薬が登場してきました。

アルツハイマー病ワクチン - 第二世代の根本的治療薬とは


アルツハイマー病患者の脳内に蓄積して神経細胞を障害する2つのたんぱく質を標的とする根本的治療薬の

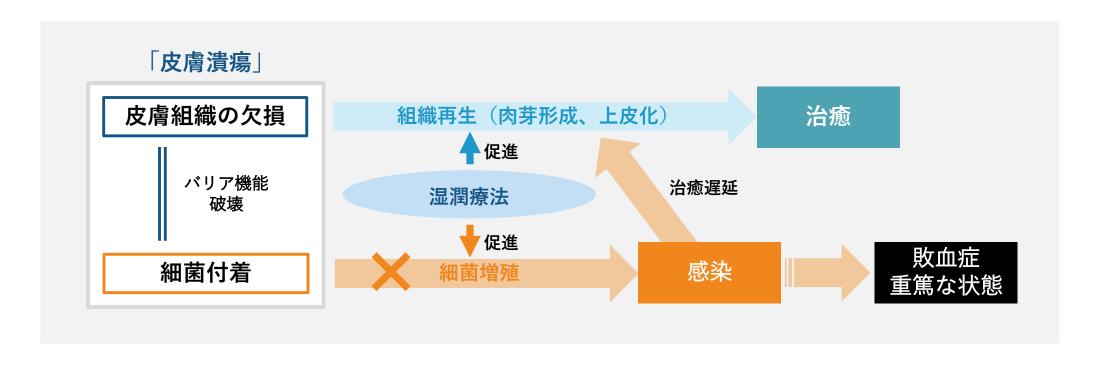
研究開発が進んでいます。認知症が発症する20~30年前からアミロイドβの蓄積が始まり、

また、認知症発症の15年程前からはタウたんぱく質が増え始め、記憶力の衰えが見られるようになります。

アミロイドβやタウたんぱく質が蓄積し始めていても、当初はアルツハイマー病の症状はなく、次第に軽度認知症を発症します。

現在、アミロイドβを標的とする抗体医薬品が承認され、ファンペップではタウたんぱく質を標的としたワクチンの開発を開始しました。

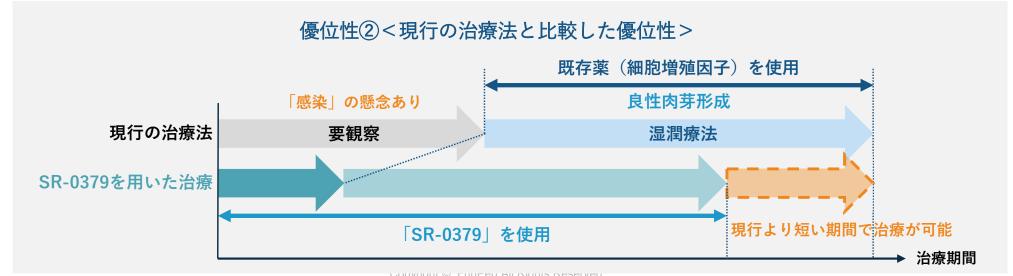
皮膚潰瘍治療薬「SR-0379」


http://www.funpep.co.jp

褥瘡等の皮膚潰瘍治療は、「創傷治癒促進」「感染コントロール」の両立が課題

皮膚潰瘍は 皮膚組織が欠損し、 バリア機能が破壊されているため、細菌が付着しやすい。

細菌が入ったまま通常の湿潤療法を行うと細菌が増殖する可能性があるため、 細菌をコントロールして湿潤療法を行いたい。



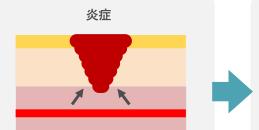
抗菌作用を併せ持つSR-0379には2つの優位性があります

皮膚潰瘍治療薬「SR-0379」は 抗菌作用と血管新生作用の2つを持っているため、 保菌状態で感染しそうな状況 (クリティカルコロナイゼーション) に使用することで、 現行よりも治療期間の短縮が期待される。

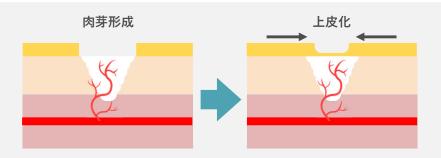
SR-0379は、「創傷治癒促進効果」「抗菌活性」を併せ持つ 創傷治癒 抗菌活性 種類 促進効果 SR-0379 0 \bigcirc 細胞増殖因子 X 消毒剤 \bigcirc 治癒遅延リスク 抗生物質 耐性菌発現リスク

優位性① < 既存薬と比較した優位性 >

褥瘡の症状が治るまでの経緯(治癒経過)


出血凝固期

出血による凝血塊が欠損を ふさいで止血する


炎症期

傷を綺麗にする (免疫) 細胞などが活発になる

増殖期

血管が新生されて「肉芽形成」され、 新しい皮膚ができて「上皮化」が始まります

自然に上皮化できないと考えられる傷の時は、 植皮で人工的に上皮化することもある (簡単な外科的処置)

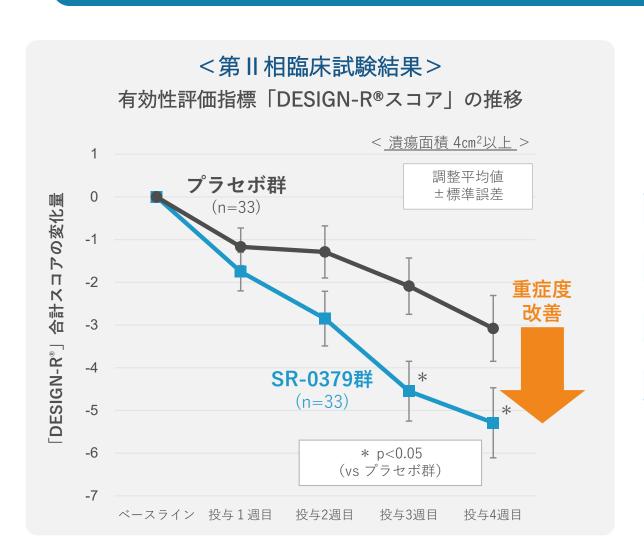
【植皮とは】 患者さん自身の 健康な皮膚から切り取った皮膚片を、

植皮術

皮膚の欠損した部分に移植して再生させること。

【SR-0379の投与】

血管新生を促す皮膚潰瘍治療薬 「SR-0379」を投与することで、 良性な肉芽形成をすることができる。



写真提供:埼玉医科大学形成外科市岡滋教授

皮膚潰瘍治療薬「SR-0379」 - 第 II 相臨床試験の結果

第 II 相試験では、重症患者のサブグループにおいて、 潰瘍の面積(大きさ)の比較だけではなく、肉芽形成など多角的に評価ができる 「DESIGN-R®スコア」にて重症度が改善されたことがわかりました

(参考) 「DESIGN-R®スコア |

- ▶「肉芽形成」「感染徴候」等を多角的に評価可能▶ 日本褥瘡学会が開発、現在実臨床で広く使用
- スコアは、下記項目 (「Depth」除く) の 合計により算出する。

<u>D</u> epth	深さ
<u>E</u> xudate	滲出液
<u>S</u> ize	大きさ
<u>I</u> nflammation/Infection	炎症/感染
<u>G</u> ranuation	肉芽組織
<u>N</u> ecrotic tissue	壊死組織
<u>P</u> ocket	ポケット

皮膚潰瘍治療薬「SR-0379」

- 第Ⅲ相臨床試験の目的

第Ⅱ相試験結果によりSR-0379の臨床的位置付けが明確となり、

植皮等が必要な患者様を対象に第Ⅲ相試験を実施

<第Ⅱ相臨床試験結果>

良性肉芽形成を促進して創底状態を整備するための薬剤に適していることが分かった

評価項目

結果

有意に重症度改善

DESIGN-Rスコア

(副次評価項目)

遺瘍面積の縮小率 (主要評価項目)

潰瘍面積縮小に 有意差なし

PMDAと相談の結果 臨床的意義が明確な 主要評価項目を設定

<第Ⅲ相臨床試験>

植皮等が生着可能な創底状態まで皮膚潰瘍状態を改善する期間が 短縮できるかを検証する

主要評価項目

植皮等の簡便な外科的措置までの期間

【難治性創傷治療機器の臨床評価に関する評価指標】

次世代医療機器評価指標の公表について(薬生機審発0925第1号)

各臨床的位置付けを踏まえて主要評価項目を選択することが推奨された

目的

主要評価項目

創部環境好転

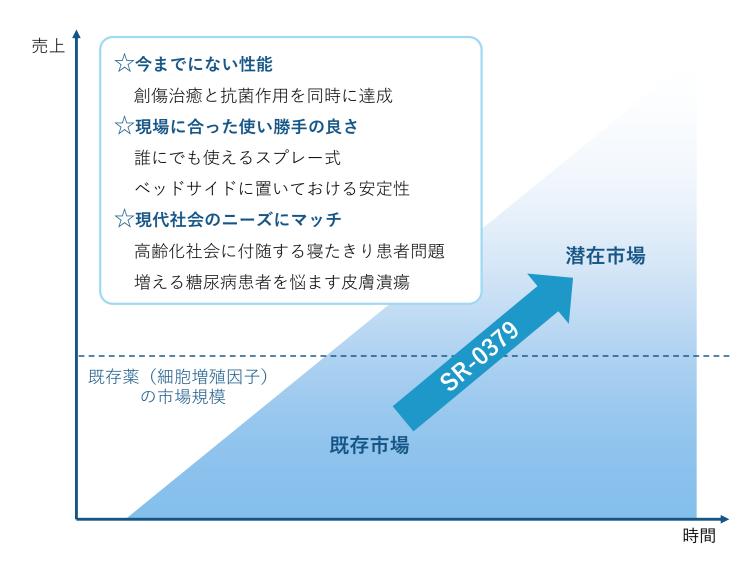
二次治癒又は <u>簡単な手技による閉鎖可能な</u> <u>創傷となるまでの期間</u>

完全治癒

完全上皮化 潰瘍面積の縮小率他

植皮等ができるようになるまでの期間を 第Ⅲ相試験の主要評価項目とした

主要評価項目において統計学的有意差を確認できなかったものの、 事後解析により効果がみられた特定の皮膚潰瘍患者に対する開発を検討中


<第Ⅲ相臨床試験の概要>

試験デザイン	プラセボ対照二重盲検比較試験
対象患者	簡単な外科的措置(縫合、植皮、有茎皮弁)が必要な皮膚潰瘍を有 する患者
主要評価項目	簡単な外科的措置に至るまでの日数
用法用量	SR-0379又はプラセボを1日1回、28日間投与
目標症例数	120例

臨床現場のニーズに応え、既存の市場を超えて成長する「SR-0379」

皮膚潰瘍治療薬「SR-0379」の売上イメージ

皮膚潰瘍(褥瘡及び糖尿病性潰瘍)患者数は、 日本で約100万人、米国で230万人と推測

<日本>

対象疾患	患者数
褥瘡	約20万人
糖尿病性潰瘍	約80万人
合計	約100万人

<米国>

対象疾患	患者数
褥瘡	約50万人
糖尿病性潰瘍	約180万人
合計	約230万人

(出所) P64を御参照下さい。

研究開発パイプライン

http://www.funpep.co.jp

研究開発パイプライン

<開発品>

	開発品	対象疾患	事業化	 臨床試験	 探索研究	前臨床	臨床試験		導出先等	型 契約総額 ^{注1}			
	用光阳	刈水沃忠	想定地域	実施地域	抹 米 切九	削幅床	第Ⅰ相	第Ⅱ相	第Ⅲ相	等山兀守	100億円		
機能性 ペプチド	SR-0379	皮膚潰瘍 (ひふかいよう)	全世界	日本		第Ⅲ相		第Ⅲ相		第Ⅲ相		塩野義製薬(株) (全世界のライセンス契約)	
	FPP003	乾癬 (かんせん)	全世界	豪州		第 I / II a	相			住友ファーマ(株)			
抗体誘導	(標的:IL-17A)	強直性脊椎炎 (きょうちょくせいせきついえん)	全世界	日本		■ 第Ⅱa相				(北米のオプション契約)	契約総額 ^{注2} 178億円		
ペプチド	FPP004X (標的:IgE)	花粉症 (季節性アレルギー性鼻炎)	全世界	_	前臨床		医師主導治験 AMED			塩野義製薬(株) (全世界のオプション契約)			
	FPP005 (標的:IL-23)	乾癬 (かんせん)	全世界	_	前臨床		ト ト 版大学大	- 学院		未定			
新型コロナ ペプチドワクチン	FPP006	新型コロナウイルス 感染症(COVID-19)	全世界	_	前臨床		医学系研究 AMED	究科		未定			

- (注1) 契約一時金、開発マイルストーン及び販売マイルストーンの合計額です。
- (注2) オプション契約締結に伴う一時金、オプション権が行使された場合のライセンス契約の一時金、開発マイルストーン及び販売マイルストーンの合計額です。

<研究テーマ>

種類	対象疾患
	精神神経疾患
	片頭痛
	高血圧
抗体誘導ペプチド	アレルギー性疾患
加件弱等ペクテト	抗血栓
	脂質異常症
	アルツハイマー病
	心不全

連携大学	提携企業
大阪大学大学院医学系研究科 (抗体誘導ペプチドに関する共同研究) 熊本大学 (脂質異常症に関する共同研究) 東京大学 (心不全に関する研究(AMED))	住友ファーマ(株) (精神神経疾患に関する研究契約) (株)メディパルホールディングス (研究開発支援)

1

アレルギーワクチンのFPP004X(抗lgE抗体誘導ペプチド)のオプション契約締結

- ・2023年6月、FPP004のバックアップ化合物の探索研究の結果、新規開発化合物を決定
- ・2024年3月、塩野義製薬㈱との間で、オプション契約を締結

2

アルツハイマー病ワクチン、心不全ワクチンの研究を開始

- ・アルツハイマー病に対する抗リン酸化タウ抗体誘導ペプチドの研究
- ・心不全に対する抗IGFBP7抗体誘導ペプチドの研究

3

<u>FPP003 (抗IL-17A抗体誘導ペプチド) の臨床試験で抗体産生を確認</u>

- ・豪州で実施した第 I / II a相試験の結果を公表
- ・探索的評価項目の有効性は、他の試験結果も踏まえて引き続き評価する方針

4

SR-0379 (皮膚潰瘍治療薬) は今後の開発方針を検討中

・ 部分集団解析で効果がみられた特定の皮膚潰瘍患者を対象とする開発を検討中

5

FPP005 (抗IL-23抗体誘導ペプチド) は製剤技術研究を実施中

・さらなる開発品プロファイルの向上を目指すための新規製剤技術研究

アレルギーワクチンの資本業務提携の内容

FPP004Xは、大阪大学大学院医学系研究科との共同研究のもとで当社が創製した開発化合物で、 IgE (Immunoglobulin E) を標的タンパク質とする抗体誘導ペプチドです。 現在、花粉症 (季節性アレルギー性鼻炎) を対象疾患として前臨床試験を実施しております。

研究開発は、FPP004Xの前臨床試験を優先的に進めていく SR-0379は、次相開発方針を決定する予定

開発品	対象疾患	 臨床試験	2023年	23年 2024年				
	刘家疾忠	実施地域	4Q	1Q	2Q	3Q	4Q	
<抗体誘導ペプチドプロジェクト>								
FPP003 (標的:IL-17A)	強直性脊椎炎 (きょうちょくせいせきついえん)	日本			第Ⅱa相 医師主導治縣	È		
FPP005 (標的:IL-23)	乾癬 (かんせん)	_		23年内の臨床試験 ファイル向上を				臨床試験 2025 ²
FPP004X (標的:IgE)	花粉症 (季節性アレルギー性鼻炎)	_			前臨床			*
新規開発化合物	未定	_		年内に 新規開発化合物 目指す	勿決定を		前臨床	
<皮膚潰瘍治療薬	「SR-0379」 >							
SR-0379	皮膚潰瘍 (ひふかいよう)	日本		Ę	開発方針の協調	養中		

ファイナンスによる調達資金の充当計画

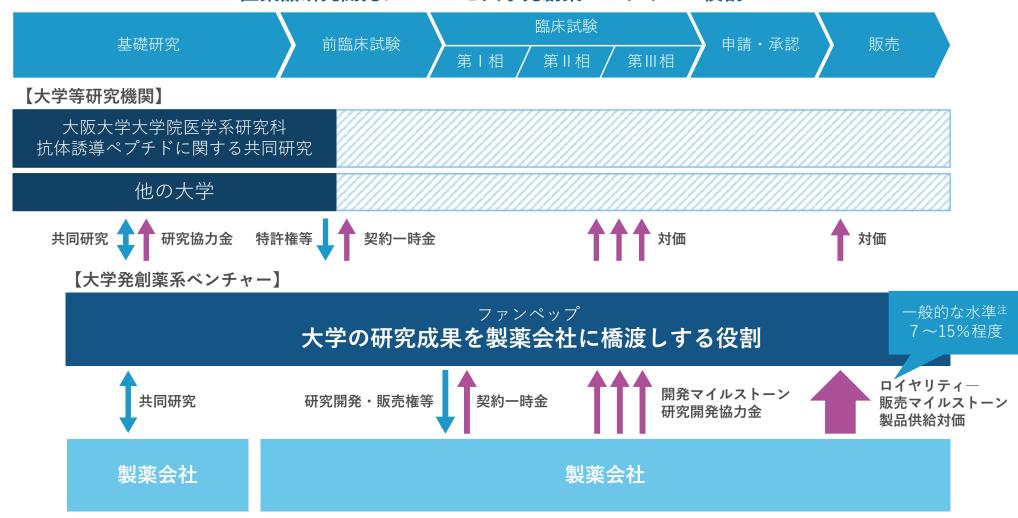
IPO調達資金及び第9回新株予約権による調達資金は概ね充当済み 今後は、IPO調達資金及び塩野義製薬に対する第三者割当増資の調達資金を 抗体誘導ペプチド「FPP004X」へ充当する計画

(百万円)

対象	内容	調達金額 (充当金額)	2021/12期	2022/12期	2023/12期	2024/12期
皮膚潰瘍治療 SR-0379	皮膚潰瘍(褥瘡、糖尿病性潰瘍等)を対象とする 臨床試験費用等の開発費	760 (760)				
抗体誘導ペプチド FPP003	尋常性乾癬、強直性脊椎炎を対象とする 臨床試験費用等の開発費	379 (379)				
抗体誘導ペプチド FPP005	尋常性乾癬を対象とする 臨床及び前臨床試験費用等の開発費	250 (250)				
抗体誘導ペプチド FPP004X	花粉症(季節性アレルギー性鼻炎)を対象とする 前臨床試験費用等の開発費	374 (159)				
抗体誘導ペプチド 新規製剤技術	抗体誘導ペプチドの新規製剤技術の開発費	40 (40)				
研究費	抗体誘導ペプチドの探索研究中のテーマに対する 研究費	295 (295)				
人件費	研究開発部門の人件費	307 (307)				•
事業運営資金	安定的な研究開発活動の継続及び推進に必要な 事業運営資金	431 (431)				
	合計	2,834 (2,620)				

⁽注) 「調達金額」は、IPO調達金額1,856百万円、第9回新株予約権の調達金額781百万円、塩野義製薬㈱に対する第三者割当増資の調達資金198百万円の合計金額です。 「充当金額」は、2024年2月末までの充当金額を記載しております。

ビジネスモデル


http://www.funpep.co.jp

「創薬系バイオベンチャー」

開発段階から収入を確保し、上市後は製品販売額に応じた収入を得る

< 医薬品研究開発プロセスと大学発創薬ベンチャーの役割>

(注) 主要製薬会社とバイオベンチャーとの導出契約における平均ロイヤリティ率 7~15%(契約提携時の研究開発ステージが進むと上昇傾向) (出所:M. Yamasaki, "Determining Pharmaceutical Royalties," les Nouvelles, September 1996.)

創薬系バイオベンチャーの主要なリスク情報は、 「医薬品研究開発の不確実性」「特定の提携契約への依存」など

1. 医薬品研究開発の不確実性

創薬系バイオベンチャーの開発ポートフォリオは、特定の開発品への依存度が高い

開発品には研究開発の延期や中止のリスクがあり、リスクが顕在化した場合には、 その後提携会社から受け取る計画の収益は影響を受け、当社の経営成績及び財政状態に重大な影響を及ぼす可能性があります。

当社対応策

当社は、プラットフォーム技術「STEP UP」を用いた創薬活動により 新規開発品を創生して開発ポートフォリオを充実させていく方針

2. 特定の提携契約への依存

創薬系バイオベンチャーの収益は、特定の提携契約への依存度が高い

提携契約には契約期間満了前に終了するリスクがあり、リスクが顕在化した場合には、 その後提携会社から受け取る計画の収益は影響を受け、当社の経営成績及び財政状態に重大な影響を及ぼす可能性があります。

当社対応策

当社は、共同研究をライセンス契約に締結に発展させることや 新規提携契約締結により特定の提携契約への依存度を低減していく方針

上記以外のリスク情報は、当社有価証券報告書(2023年12月期)の「事業等のリスク」を御参照下さい。

<参考資料>

http://www.funpep.co.jp

子会社(株)ファンペップヘルスケアとの関係

機能性ペプチド「AJP001」 独占ライセンスを保有 機能性ペプチド「AJP001 |

機能性ショートペプチド「OSK9」 化粧品原料として事業展開

エピトープデザインと配列付加

抗IL-17A抗体誘導ペプチド 「FPP003 |

抗IgE抗体誘導ペプチド 「FPP004X」

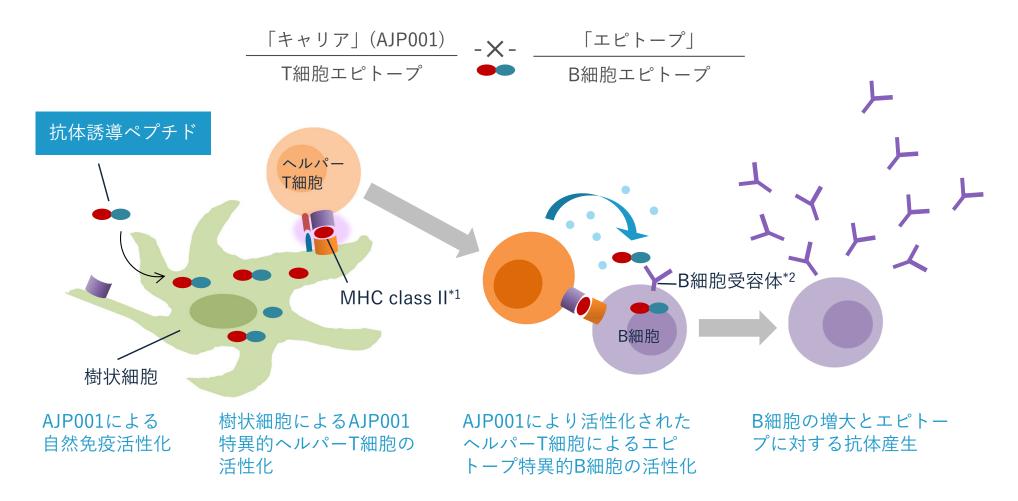
抗IL-23抗体誘導ペプチド 「FPP005 |

体内で抗体を作るためのワクチン開発

抗体医薬は、体外で作られた抗体を体に入れる治療法だったが、 「抗体誘導ペプチド」を使った医薬品は身体の中にある機能を利用して、 **体内で抗体を作るワクチンの開発を目指している**。

アンチエイジング機能の最適化

機能性ショートペプチド 「OSK9」


5個のアミノ酸

化粧品原料として事業展開

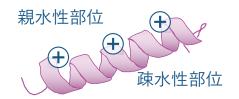
化粧品分野で事業展開しており、 アンチエイジング機能をもっているため、**大手高級化粧品会社の化粧品に 美容成分として配合**されている。

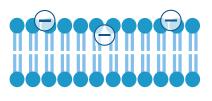
抗体誘導ペプチド 一作用メカニズム

*1:MHC class IIは樹状細胞やB細胞などの抗原提示細胞に発現する。抗原を取り込んだ抗原提示細胞は、取り込んだ抗原をペプチドに分解しMHC class IIとの複合体としてT細胞に抗原提示する。

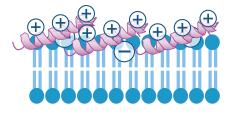
*2:B細胞では細胞膜上に発現する抗体分子が抗原受容体(B細胞受容体)として働く。B細胞はB細胞受容体に結合した抗原を取り込みヘルパーT細胞に提示し活性化され抗体を産生する。B細胞受容体が放出されたものが抗体である。

SR-0379及び抗体誘導ペプチドプロジェクトの特許は、 日本、米国及び欧州において成立しています


対象	内容	発明の名称	出願番号	登録状況
SR-0379	物質特許	血管新生誘導活性及び抗菌活性を有するポリペプチド及びそれを含有する創傷治療剤	PCT/JP2010/58838	日本:成立 米国:成立 欧州:成立
AJP001	物質特許	抗老化作用を有するペプチドおよびその利用	PCT/JP2014/058786	日本:成立 米国:成立 欧州:成立
AJP001	用途特許	新規ペプチドおよびその用途	PCT/JP2015/077139	日本:成立 米国:成立 欧州:成立
FPP003	物質特許	疾患の要因となる生体内タンパク質を標的と するコンジュゲートワクチン	PCT/JP2017/012187	日本:成立 米国:成立 欧州:成立


- 抗菌作用メカニズム -

<抗菌ペプチドの抗菌作用メカニズム>


細菌の細胞膜を破壊する作用メカニズムのため、耐性菌ができにくい


抗菌ペプチド らせん構造(両親媒性) 「プラスの電荷|

細菌の細胞膜 「マイナスの電荷 |

「プラスの電荷」の抗菌ペプチドが「マイナス電荷」の細菌膜に結合し、膜を貫通

細菌の細胞膜を破壊

皮膚潰瘍治療薬「SR-0379」

- 抗菌活性試験 -

標準株				MIC (μg/ml)
		グラム陽性球菌	黄色ブドウ球菌	16
		グラム陽性桿菌 グラム陰性桿菌	枯草菌	2
	好気性菌		大腸菌	8
ジカニリマ			緑膿菌	16/32
バクテリア			アシネトバクター	8
			アクネ菌	16/32
	嫌気性菌	グラム陰性桿菌	バクテロイデス・フラジリス	32
			フソバクテリウム・ヌクレアタム	16/32
	真菌		ペニシリウム・グラブラム	8/16

臨床株		MIC (μg/ml)
	アミノグリコシド系抗生物質耐性菌	16
緑膿菌	カルバペネム系抗生物質耐性菌	16-64
	フルオロキノロン系抗生物質耐性菌	16/64
	メチシリン感受性菌	32
黄色ブドウ球菌	メチシリン耐性菌1	32 –
	メチシリン耐性菌2	32 -
アシネトバクター	多剤耐性菌	16

MRSA (メチシリン耐性黄色ブドウ球菌)

(出所) Tomioka H, et al. Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS ONE. 2014;9:e92597. doi: 10.1371/journal.pone.0092597.

データ出所一覧

一皮膚潰瘍治療薬「SR-0379」

<患者数>

	日本	20 万人	NPO法人創傷治癒センターHP
褥瘡	米国	50万人	Russo A, Steiner C, Spector W. Hospitalizations Related to Pressure Ulcers among Adults 18 years and older, 2006. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 20062008 Dec.
糖尿病性潰瘍	日本	80 万人	「糖尿病患者数766万人」(①)×「潰瘍保有率11%」(②) ① 厚生労働省「平成28年 国民健康・栄養調査」 ② 日本糖尿病対策推進会議「平成20年3月 日本における糖尿病患者の足外観異常及び糖尿病神経障害 の実態に関する報告」
	米国	180 万人	「糖尿病患者数2,925万人」(①)×「潰瘍保有率6%」(②) ① IDF「Diabetes Atlas 2015」 ② AHRQ「Incidence of diabetic foot ulcer and lower extremity amputation among Medicare beneficiaries, 2006 to 2008」

免責事項

- ・ 本資料に記載された将来の業績に関する記述は、将来情報です。将来情報には、「信じる」、「予期する」、「計画する」、「戦略をもつ」、「期待する」、「予想する」、「予測する」または「可能性がある」というような表現および将来の事業活動、業績、出来事や状況を説明するその他類似した表現を含みます(これらに限定されるものではありません)。将来情報は、現在入手可能な情報をもとにした当社の経営陣の判断に基づいています。そのため、これらの将来情報は、様々なリスクや不確定要素に左右され、実際の業績は将来情報に明示または黙示されたものとは大幅に異なる場合があります。したがって、将来情報に全面的に依拠することのないようご注意ください。
- 本資料の作成にあたり、当社は当社が入手可能なあらゆる情報の真実性、正確性や完全性に依拠し、前提としています。当社はかかる情報のうち、当社以外の第三者の公開情報等の真実性、正確性あるいは完全性について独自の検証を行っておらず、その真実性、正確性あるいは完全性について、当社は何ら表明及び保証するものではありません。
- 本資料に記載された情報は、事前に通知することなく変更されることがあります。

次回の開示予定

次回の本資料の開示は、2025年3月に行う予定です。

なお、事業進捗に関する内容(研究開発パイプライン(P50)及びパイプラインの開発計画(P53)等)に変更がある場合には、四半期決算短信において当該変更事項を開示する予定です。